
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2010; 63:415–430
Published online 27 July 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2073

A surface remeshing technique for a Lagrangian description
of 3D two-fluid flow problems

Marcela Cruchaga1,∗,†, Diego Celentano2, Piotr Breitkopf3, Pierre Villon3

and Alain Rassineux3

1Departamento de Ingenierı́a Mecánica, Universidad de Santiago de Chile (USACH),

Av. Bdo. O’Higgins 3363, Santiago, Chile
2Departamento de Ingenierı́a Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile,
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SUMMARY

Classical Lagrangian schemes applied to update the front position between two immiscible incompressible
fluids have been long recognized to provide a sharp representation of the interface. However, the main
drawback of these approaches is the progressive distortion in the distribution of the markers used to
identify the material front. To avoid this problem, a 3D interface remeshing algorithm is proposed in
this work. In addition, the remeshed front is enforced to preserve the global volume. These aspects are
incorporated in an existing fluid dynamics formulation for the analysis of two-fluid flows problems. The
resulting formulation, called as the 3D-moving Lagrangian interface remeshing technique, is applied in
the numerical analysis of two-fluid flow problems. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many problems of engineering design and processes analysis need the accurate description of
time-dependent incompressible flows with moving two-liquid interfaces or free surfaces. Filling
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processes, casting, refinement of metals or open channel flows give an idea of very different
problems involving moving boundaries and interfaces.

Several numerical methodologies have been proposed to describe the evolution of moving
interfaces or free surfaces. One family of approaches defines a unique domain varying in time,
like the arbitrary Lagrangian–Eulerian ‘ALE’ [1–4] and the deformable spatial domain stabilized
space–time ‘DSD/ST’ [5] formulations. In these approaches, the mesh used to discretize the
domain is updated at each step to fit the interface. These techniques are highly effective for the
treatment of moving interfaces since they adjust the discretization of the domain to the position
of the interface. This guarantees a suitable precision in the description of the material front since
it remains sharply defined and a fine mesh can be easily built surrounding the interface in order to
improve the accuracy in both velocity and pressure fields. Nevertheless, the remeshing technique,
commonly applied to avoid the mesh distortion during motion, induces long-term accumulated
lose of precision in the prediction of the interface position. This is mainly due to lacks in the
volume preservation during geometric redefinition and the transfer of field variables from one to
another mesh. Moreover, distortion problems are also presented in particle-based methods [6–8].

The fixed mesh formulations have the advantage that preserve the values of the flow variables
at nodal point level. Hence, a second family of proposed methods uses a fixed mesh for the
calculation of the fluid mechanics of the problem and an additional model is required to identify
the interface position inside the domain during time. Within these approaches, two techniques can
be distinguished to describe the motion of free surfaces or interfaces.

The most extended methods use a marking function, originally known as ‘pseudo-concentration’.
The motion of the interface is defined by the solution of a pure convection equation of this function
[9–27] and the material properties are distributed according to the values of such function. The
main advantage of this approach is the simplicity on handling the interface. The interface has to be
represented by a step function. Nevertheless, the numerical discretization of the convective term
of the equation used to update the interface causes that the material front artificially spreads and,
additionally, oscillations appear in the surroundings of the interface discontinuity. To avoid these
problems, ‘upwinding’ techniques are also applied to obtain the weak form of the advection equation
and, in addition, a redefinition of the marker function is usually considered in the surrounding
of the interface. Moreover, a smooth distribution of the properties in the surroundings of the
front is generally assumed, i.e. a regularization of the properties is applied to obtain them at the
integration points. Another drawback of these formulations is the loss of mass that accumulates
during time. This inconvenience requires the consideration of specific algorithms to correct the
volume. A method able to deal with a step marker function accounting for global mass conservation
is presented in [26, 27]. The properties are distributed according to this function without applying
regularization. In addition, a sub-element integration technique is used to improve the precision in
the computation of the finite element matrices and vectors of the flow equations. All these capturing
methods present the drawback that the stability of the numerical solution of the convection equation
used to update the interface is strongly limited by the Courant number that also rules the space
and time step sizes.

An alternative solution for solving moving interfaces on fixed meshes is to represent the interface
by points or markers that move with a Lagrangian scheme in time [28–33]. In these formula-
tions, the front remains sharply defined and the material properties are normally regularized in the
surroundings of the interface. Within the framework of these techniques, a finite element formu-
lation that improves the global conservation of mass (equivalent to the conservation of volume in
incompressible fluids) has been presented in [31, 32]. This technique was called moving Lagrangian
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interface technique ‘MLIT’. In addition, as the markers distribution distorts during motion, a
volume preserving remeshing technique for the interface has been proposed in [33] for 2D cases.
This last extension accounting for interface remeshing is called ‘MLIRT’. The Lagrangian tech-
niques exhibit a comparative good numerical behavior with respect to the capturing methods when
coarse meshes and large time step sizes are used.

In this work we present the 3D version of the MLIRT. To this end, a 3D global volume preser-
vation algorithm and a surface remeshing strategy are proposed. The formulation is basically
developed using a local description for the geometrical aspects. The markers’ positions are recon-
structed based on a least-square approach and are constrained to preserve the volume of the chunk
of fluid. The governing equations used in the analysis are presented in Section 2, while the new
aspects of the present 3D interface approach are shown in Sections 3 and 4. Two numerical exam-
ples are presented in Section 5. First, a comparison of the results computed with 2D and 3D models
for a free sloshing problem is studied to demonstrate the capabilities of the 3D-MLIRT. Then,
the collapse of a cylindrical water column is presented to compare the computed MLIRT results
with those provided by other numerical techniques and available experimental data. In addition,
to perform numerical comparisons, the formulations presented in [26, 27, 33] are extended in the
context of this work to describe axisymmetric models.

2. GOVERNING EQUATIONS

The study of two-fluid flows requires the predictions of velocity and pressure in the domain of
analysis and the description of the interface motion. Within the context of continuum mechanics,
the Navier–Stokes equations of unsteady incompressible flows are written as follows:

�
�u
�t

+�u∇ ·u+∇ p−∇ ·(2�e)=�f in �×Y (1)

∇ ·u=0 in �×Y (2)

where �,u,p,�,e and f are the density, velocity, pressure, dynamic viscosity, strain-rate tensor and
the specific body force. In these equations, � denotes an open-bounded domain with a smooth
boundary �, and Y is the time interval of interest. This system of equations is completed with a
set of initial and boundary conditions.

In cases where two-fluid flows are analyzed, these equations can be applied to the whole domain
occupied by both materials, i.e. �=�1∪�2 and �1∩�2=∅ with �1 and �2 being consequently
the time-varying subdomains of fluids 1 and 2. In such cases, an additional model to describe the
interface evolution is needed. The numerical technique used in the present work and its specific
related aspects are presented in Sections 3 and 4.

In the framework of the finite element method, the weak form of the system of differential equa-
tions (1) and (2) is obtained using a generalized streamline operator technique. This formulation,
which belongs to the family of methods that consider stabilization parameters to circumvent the BB
stability conditions, allows the use of equal order interpolation functions for the primitive variables
of the problem. The time integration of the equations is performed using an Euler backward scheme.
More details about the finite element formulation used in this work can be found in [31, 34].

The interface between the two fluids represents a strong discontinuity in material properties
and gradients of the variables of the problem (velocity and pressure). The field of the variables
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is continuously represented by the finite element approach and thus the jump in their gradi-
ents is not exactly represented along the interface. Nevertheless, an enhanced integration technique
is considered when computing the finite element matrices and vectors to properly capture the
discontinuity in material properties at the elements crossed by the interface. In this procedure,
the properties act as weights to distribute the nodal values of the variables and their gradients
in the elements surrounding the interface. An illustration of the capability of the present numer-
ical technique to capture discontinuities in pressure gradients has been assessed in different 2D
problems [31].

Finally, the present model does not include surface tension effects since in the applications
studied in this work, the interface dynamics is mainly governed by the velocity field.

3. A 3D EXTENSION OF THE MOVING LAGRANGIAN INTERFACE TECHNIQUE

Based on the previous work developed in 2D (see [33] for further details and additional references),
we develop the present algorithm for 3D analysis. The basic moving interface algorithm defines
the material front with a set of points that serve as markers. In 3D simulations, an interface mesh
defined by triangular elements needs to be updated at each time step of the analysis in order to
assign material properties in the domain �. The main operations involved in the moving Lagrangian
interface technique are: identification of the elements that host the interface points, evaluation of
the markers’ natural coordinates, calculation of their velocities, updating of the front position and
redefinition of the material properties in the whole domain. The velocity of the interface points is
computed by using the standard finite element interpolation functions and the nodal velocity values
of the elements where the markers are located. Then, using this velocity, the interface is updated
by applying a direct path-particle Lagrangian scheme. After this, the properties are reassigned at
the integration points according to the updated interface position.

It is important to remark that this interface-updating scheme is independent of the formulation
used to solve the fluid dynamics of the problem. The updated position at time t+�t for each point
of the front is computed with the following discrete equation:

Xt+�t =Xt +�tVt+��t (3)

where �t is the time step, � is the time integration parameter (usually set to 1.0), Xt is the known
vector of marker positions at time t,Xt+�t is the updated position at time t+�t and Vt+��t is the
velocity vector of the markers.

Owing to the simple algebraic nature of the algorithm, the computer time needed to
perform a complete interface update is negligible compared with the time required by the fluid
dynamics solver. We specifically point out four crucial operations required in the analysis:
properties assignment, sub-element integration, volume preservation and remeshing of a 3D
surface.

3.1. Properties assignment and sub-element integration technique

The description of the interface by oriented triangles is essential in the properties assignment
algorithm. To this end, the unit outward normal n at each triangle of the interface mesh is defined.
The material properties at the integration points are specified according to their relative position
with respect to the interface. Such a position is basically determined by projecting the minimum
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distance vector of the integration point to the surface over n. In order to reduce computational
time, the algorithm is only applied to points near to the interface (note that this includes not
only the current elements intersected by the interface but also those in a region bounded by the
maximum interface displacement). The technique determines the triangle closer to the each point
by measuring minimal distances between the triangle vertices and the integration point.

To properly capture the discontinuity in properties at the finite elements crossed by the interface
and, consequently, to improve the accuracy in the numerical results, an enhanced integration
technique is considered. Thus, a two-fluid element is subdivided in the isoparametric space into
new elements (sub-elements), in which the integration of the matrices and vectors of the finite
element formulation used to solve the fluid dynamic problem is performed.

These procedures are simple and provide reasonably good results for any finite element typology
of the fluid dynamics mesh (i.e. triangles and quadrilaterals in 2D [31], tetrahedral and hexa-
hedra in 3D).

3.2. Volume preservation algorithm

In general, the interface position at time t+�t computed via Equation (3) does not necessarily
preserve the mass of each medium. This is attributable to the fact that the discrete solution of
the continuity equation for incompressible flows guarantees the mass conservation over the whole
domain but cannot deal with the mass fluxes that may locally occur at the interface between both
media. Moreover, the space–time discretization applied to the Navier–Stokes equations including
the interface motion condition also provides an approximated fulfillment of the mass conservation
condition. Additionally, the discrete equation (3) introduces errors of approximation. Therefore, a
global mass-corrector algorithm has been designed to ensure that the updated interface position at
time t+�t preserves the mass for each medium. For closed systems, i.e. those with no input–output
mass flux across the boundary, the mass to be preserved is the original one. For open systems,
on the other hand, the current front position must preserve an amount of mass that may change
according to the input–output flux across the boundary. As we are dealing with incompressible
flows, it is possible to express this conservation in terms of volumes. In what follows, for simplicity,
we only present the 3D volume preserving algorithm for closed systems.

According to Green’s theorem
∫
� ∇ ·H��=∫

�H ·n�� and defining H= xĭ+ y j̆+zk̆, the
volume of a domain � can be expressed as

V� = 1

3

∫
�

(nx x+ny y+nzz)�� (4)

where � denotes the smooth boundary of V� and n is its unit outward normal. Discretizing the
boundary � with ntr triangular elements with generic vertices (A, B,C), and performing the
integration in the isoparametric space for such a geometry (�,�), the following expression to
compute the volume arises:

V� = ∑
ntr

1

3

∫
�,�

[(nx xA+ny yA+nzzA)(1−�−�)]|J|����

+
∫

�,�
[(nx xB +ny yB +nzzB)�+(nx xC +ny yC +nzzC )�]|J|���� (5)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:415–430
DOI: 10.1002/fld



420 M. CRUCHAGA ET AL.

where |J| is the determinant of the Jacobian of the transformation. The final discrete equation to
compute the volume is:

V� = 1

6

∑
ntr

(xAyBzC +xB yC zA+xC yAzB −xAyC zB −xC yBzA−xB yAzC ) (6)

As already mentioned, the updated position of markers of the interface obtained using
Equation (3) does not necessarily preserve the volume. Hence, the updated marker positions are
corrected to enforce the volume preservation according to

Xt+�t
vol−.pres=Xt+�t +��X (7)

where �X=−sign(V ·n)V�t is a proposed correction of the coordinates of the points of the
interface. This correction is selected to balance the flux of mass over the interface and � is an opti-
mization parameter used to minimize the error. The exact volume is computed using Equation (6)
with coordinates obtained from Equation (7). The resulting expression for the exact volume is
a scalar third-order �-dependent equation. The optimal � parameter is obtained as the minimum
value that verifies such expression.

It is important to remark that, due to Equation (4), the methodology to compute volume requires
the definition of the whole surface that wraps a volume. Hence, such a surface can be described
with a surface mesh with non-necessarily conforming elements.

In spite of these improvements (i.e. the sub-element integration technique and the global mass
conservation corrector algorithm), distortions in the markers’ distribution have been observed
during the analysis of some problems due to the Lagrangian scheme used to update the interface.
To overcome this drawback, an interface remeshing technique embedded in the computations is
proposed as described in the next section.

4. 3D INTERFACE REMESHING TECHNIQUE

To remesh the interface front the following algorithm was implemented:

Step 1: An initial surface mesh defined by three-noded triangular elements is given.
Step 2: New interface markers are added at the middle of the edges of the triangles according

to two criteria:

(a) admissible maximum local curvature is defined as the angle between the elements
sharing the edge 	p.

(b) edge length bounded between predetermined admissible minimum and maximum
values, i.e. emin and emax.

(c) bounded area ratio [1/
, 
] between the elements sharing the edge (
>1).

We call X̃new, the coordinates of the marker added in this step.

Step 3: With the aim of preserving interface curvatures, the coordinates of each new marker
(white dot in Figure 1) are computed by interpolating its position X̃new on a local
representation of the original interface obtained via either a least squares or a diffuse
approximation [35]. To this end, a local coordinate system (n, t1, t2) is defined at each
new marker (see Figure 1) where n is a unit outward normal vector to the interface
computed as the average of the unit outward normals to each element sharing the edge
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Figure 1. Definition of a projection plane and construction of a cloud of evaluation points.

(n1 and n2 in Figure 1), t1 is a tangent vector defined along the edge and t2=n∧t1. To
locally represent the interface, a set of n p markers (black dots in Figure 1) is selected as
the union of the sets of nodes connected to the two edge points. Thus, this set of markers
defines the cloud of points of an edge. The local coordinates (h,�,� ) of markers are
obtained as h=(x̂, ŷ, ẑ) ·n,�=(x̂, ŷ, ẑ) ·t1 and �=(x̂, ŷ, ẑ) ·t2, where (x̂, ŷ, ẑ) are the
coordinates (x, y, z) translated to the origin of the system (n, t1, t2). Using a second-
order polynomial basis pt =(1,�,�,�2/2,��,�2/2), the interface position at a pointX is
obtained as h̃(X)=pt (X)c(X). The coefficients of c are computed such as the functional

J (c)= ∑
i=1,n p

wi (hi − h̃i )
2 (8)

is minimized, resulting in:

c(X)=(PtWP)−1PtWh (9)

P being the matrix of n p column vectors (i.e. its i th column corresponds to p evaluated
at point i), andW a diagonal weight matrix with elements wi . Assuming a least-squares
approximation, W is the identity matrix and the coordinates of the new added marker
are Xnew= X̃+

newc(1)n (notice that �=�=0 at this point).
Step 4: A new triangular interface mesh using the initial and repositioned added markers is

built.
Step 5: Markers can be removed according to the following criteria:

(a) the marker is contained in a plane, i.e. markers surrounded by a coplanar element
patch. A new triangulation of the patch envelope is built with the remaining markers.

(b) a percentage pe of the admissible minimum edge length value is used to collapse
the edge markers.

(c) a minimum area measure 1
2 (peemin)

2 is used to collapse the triangle into one
marker. The lists of triangles and markers are updated and renumbered in order to
keep a consistent surface triangulation.

Step 6: The quality of the resulting mesh is verified and corrected according to a chosen
diagonal inversion criterion. The quality of a patch of two triangular elements sharing
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Figure 2. Diagonal swapping criterion: selection of patches according to triangles’ qualities.

an edge is the minimum between such triangles’ qualities q computed as

q̄= q

qopt
=

rint
max(e1,e2,e3)

qopt
(10)

where e1, e2, and e3 are the length of the edges of the triangle, rint =2At/e1+e2+e3 is
the radius of the inner circle to the triangle (see Figure 2), At is the area of the triangle
and qopt=1/2

√
3 is an optimal quality (quality computed over an equilateral triangle).

Diagonal swapping is performed according to a quality ratio between elements. Given
only the markers’ position as data, two patches of triangles could be built, i.e. patch
1 or patch 2, according to whether AB or CD segment is taken as the shared edge as
illustrated in Figure 2. We select the patch of maximum quality.

Step 7: The markers are repositioned according to a center of mass criterion taken into account
boundary conditions.

Step 8: The volume preserving algorithm described in 3.2 is applied to the new mesh.

Remark 1
The normal vector to the projection plane n is determined by the average of the unit outward
normals to each element sharing the edge (n1 and n2 in Figure 1) only if n1 ·n2>cos	c, with
e.g. 	c�60◦. If this condition is not fulfilled, a tip interface is identified; such an edge splits
the patch into two patches and projection planes are taken separately to one and other side of the
edge. Hence, the normals to each projection plane are considered as n1 and n2 according to the
corresponding edge side.

Remark 2
The choice of n p markers (black dots in Figure 1) to build a cloud is constrained to points belonging
to a set of triangles whose normal projection on n is of the same sign.
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Figure 3. Free-sloshing problem: (a) geometry description and (b) finite element mesh.

t=0 s  t=3 s 

t=6 s  t=9 s 

t=12 s  t=18 s 

  t=24 s  t=120 s 

Figure 4. Free-sloshing problem, free-surface mesh at different instants of the analysis for case A.

Remark 3
Special treatment is required in the remeshing of contact edges between the interface and boundary
domains. The same algorithm is applied but it is constrained to the 2D line resulting from the
intersection of the front with the boundary.
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t=0 s  t=3 s 

t=6 s  t=9 s 

t=12 s  t=18 s 

  t=24 s  t=120 s 

Figure 5. Free-sloshing problem, free-surface mesh at different instants of the analysis for case B.

This algorithm is an alternative approach to previously developed techniques of mesh generation
[22, 23, 36] and recovery of surface features [37].

5. NUMERICAL EXAMPLES

In this section, the parameters of the remeshing algorithm (see Section 4) are set as: 	p =5◦,
emax=5 emin,
=1.3,	c=60◦ and pe=0.75. To solve the 3D system of discretized equations, a
standard GMRES solver is used with a Krylov number of 500 performing in average 100 iterations
per step. In all the computations, the CPU time required for the 3D-MLIRT algorithm is less than
2% of the CPU time needed to solve the flow equations.

5.1. Free sloshing analyses

The analysis of free sloshing problems has been extensively reported and can be considered
nowadays as a benchmark problem for the evaluation of formulations for two-fluid interfaces. We
present this example with the aim to compare the interface 2D and 3D predictions computed with
present version of MLIRT.
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Figure 6. Free-sloshing problem, relative wavelength evolution at points: (a) A and (b) B, comparison
between 3D computations using different remeshing strategies.

The geometry of the problem is shown in Figure 3(a). A closed container with dimensions
0.8m×0.6m×0.3m is filled with two fluids with the lighter one being on top of the heavier one.
The initial inclined interface is linear with an average height of 0.3m and slope 1:4. The fluid
properties (taken from [5]) are used in the present analysis: �1=2kg/m3,�2=1kg/m3,�1=�2=
0.001kg/(ms) with g=0.294m/s2 (the effect of different set of properties has been assessed for
2D cases in [31]). The boundary conditions consist of slip conditions at the walls. Both fluids are
initially at rest. The 3D mesh used in the computation is shown in Figure 3(b). As reported in [31],
the performance of the sub-element integration technique is crucial when coarse meshes are used.
The computation is performed with time steps of size 0.5 s.

Different remeshing strategies are applied to verify the independency of the results when the
interface is described by different number of markers. From an initial distribution of 70 markers,
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the following cases are analyzed: remeshing algorithm using an admissible minimum edge length of
emin=0.04m (case A) and emin=0.02m (case B) in order to test the effect of the number of markers.

The interface position at different instants for cases A and B is presented in Figures 4 and 5,
respectively. The number of markers evolves up to 150 and 450 markers during the analyses
adjusting the criterion of minimum edge length.

The time history of the relative wave height at the left and right side of the container (i.e.
(hA−0.3)/0.3, with hA being the instantaneous wave height at point A and (hB −0.3)/0.3, with
hB being the instantaneous wave height at point B) is presented in Figure 6. Owing to the resulting
low Reynolds’ number of this analysis, the results computed for the 3D analysis match those
obtained for a 2D simulation of the problem, e.g. 3D effects are not relevant in this case. The
current computed results exhibit the same numerical behavior as those reported in the literature for
the study of similar cases analyzed using different numerical techniques (2D cases in [3, 20, 25]
and 3D responses as in [7]) and, in addition, they match the 2D predictions presented in [5, 33].
Moreover, the different strategies applied show similar results.

5.2. Collapse of a cylindrical water column

In this section we present the numerical analysis of the experiment originally reported in [38], with
the aim to validate the numerical prediction of the interface evolution with available experimental
data. Moreover, a numerical comparison is presented including an axisymmetric model of the
2D formulation reported in [33], an axisymmetric and a 3D version of the ETILT proposed
in [26, 27], together with the 3D-MLIRT results. Figure 7 sketches the initial geometry of the
problem and the mesh used to perform the fluid dynamic analysis. The fluid properties used in
the present analysis are: �1=1000kg/m3,�2=1kg/m3,�1=0.5kg/(ms),�2=0.001kg/(ms) with
g=9.8m/s2 and the initial radio of the cylindrical column r =0.05715m.

The interface evolution computed using a 3D version of the numerical technique presented
in [26] is plotted in Figure 8. The free-surface meshes obtained with the current 3D-MLIRT at
different instants of the analysis are depicted in Figure 9. The interface is described by 1002
markers during the analysis. The admissible minimum edge length is set to emin=0.005m. Similar
predictions of the interface are obtained using both numerical approximations.

The interface evolutions at the bottom and at the cylinder axis are shown in Figure 10. The
3D-MLIRT predictions are presented together with available experimental data and the numerical
results computed using different formulations. The numerical trends are very similar and approach
the experiments in a satisfactory way.

Figure 7. Collapse of a cylindrical water column: (a) geometry description and (b) finite element mesh.
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t = 0.01 s t = 0.10 s

t = 0.16 s t = 0.19 s

Figure 8. Collapse of a cylindrical water column, free-surface computed with 3D-ETILT
at different instants of the analysis.

t = 0.01 s t = 0.10 s

t = 0.16 s t = 0.19 s

Figure 9. Collapse of a cylindrical water column, free-surface mesh at different instants
of the analysis computed with 3D-MLIRT.

Finally, Figure 11 presents the pressure contours at instants 0.10 and 0.16 s showing a satisfactory
prediction in the pressure gradients.

6. CONCLUSIONS

A 3D version of the Lagrangian interface moving technique has been presented including an
interface remeshing technique.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:415–430
DOI: 10.1002/fld



428 M. CRUCHAGA ET AL.

Figure 10. Collapse of a cylindrical water column, free-surface evolution at bottom (a) and left wall
(b) computed using different numerical models and experimental measurements.

Figure 11. Collapse of a cylindrical water column, pressure contours at two instants of the analysis.

In particular, the 3D-MLIRT computed interface for a free sloshing problem at low Reynolds’
number exhibits a satisfactory behavior in comparison with a 2D simulation. Moreover, a good
comparison between the results computed with other numerical techniques and experiments has
been obtained for the collapse of a cylindrical water column. It should be noted that the volume
preservation condition is exactly fulfilled during the analysis where the remeshing technique is
able to describe the 3D interface during time.

The CPU consumed by the MLIRT-3D depends on the number of markers. In the cases analyzed
in this work, the time used in the remeshing is less than 2% of the total computational time.

Future work will focus on the analysis of interface evolutions at higher Reynolds’ numbers with
topology changes such as wave overturning, wave collision and bubble formation/collapse. The
analysis of more geometrically complex problems is an ongoing task.
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